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Analytical formulas for the density-of-states and sum-of-states functions of internal one-dimensional hindered
rotors are developed and analyzed. Quantum effects are taken into account via the inverse Laplace transform
of the classical rotational partition function corrected for quantum effects by the method of Pitzer and Gwinn.
Density-of-states and partition functions ofi-C3H7, n-C4H10, n-C5H12, andsec-C4H9 are calculated under a
separability assumption with internal hindered rotors treated either classically or classically with corrections
for quantum effects. Results are compared with those obtained in a full treatment with explicit accounting
for interaction between internal and external (overall) rotations. It is demonstrated that separability of the
rotational degrees of freedom can be assumed in most cases with reasonable accuracy, the main source of
disagreement between the two approaches being not the separability assumption but the approximation of a
complex torsional potential with a simpler sinusoidal function.

I. Introduction

Modeling of many classes of chemical reactions requires a
knowledge of the density-of-states and sum-of-states functions
of the involved molecules. The established common approach
is to assume separability of vibrational and rotational degrees
of freedom, as well as separability of the external and internal
rotations of the molecule.1,2 Thus, a model of the molecule
consisting of a collection of harmonic oscillators and free one-
and two-dimensional rotors is created. The density-of-states
and sum-of-states functions of such an idealized molecule are
easily calculated using, for example, the modified Beyer-
Swinehart algorithm.3 Anharmonicity of constituent oscillators
can be accounted for via the Stein-Rabinovitch approach.4

Two drawbacks to such analysis are related to (1) the presence
of one-dimensional hindered internal rotors and (2) the potential
interference of coupling between internal and external (overall)
rotations of the molecule. One approach to the treatment of
hindered internal rotors is to solve the corresponding quantum-
mechanical problem. This was done by Pitzer and Gwinn,5 who
tabulated the contributions of hindered internal rotations to
thermodynamic functions for a variety of combinations of
rotational constants and hindering barriers. Applying the
method of Pitzer and Gwinn to calculating density of states
would involve a time-consuming determination of individual
energy levels and their inclusion in the total density-of-states
function of the molecule by direct count. An alternative method
was suggested by Knyazev et al.,6 who developed analytical
formulas for the density-of-states and sum-of-states functions
of a sinusoidally hindered one-dimensional rotor based on the
inverse Laplace transform (ILT) of the classical partition
function.
While the classical treatment is applicable with a good degree

of accuracy to many internal rotors encountered in real
molecules, quantum effects may become important at room
temperature and below. Forst7 developed an algorithm for
calculating the density-of-states function of a system consisting
of independent oscillators, free rotors, and one-dimensional

hindered rotors via a numerical inversion of the overall partition
function. In its quantum form, the algorithm uses the ap-
proximation of Truhlar8 to the quantum partition function of a
one-dimensional hindered rotor. This approach requires per-
forming a numerical inverse Laplace transform of the overall
partition function, a procedure unique to each molecule.
However, there exists a demand for universal analytical formulas
that can be applied to any molecule possessing one or several
different one-dimensional hindered rotors. In section II of the
current article, new formulas for the density-of-states and sum-
of-states functions of internal one-dimensional hindered rotors
are developed via ILT of the classical partition function
corrected for quantum effects. The quantum correction is based
on the method of Pitzer and Gwinn,5 which, generally, provides
significantly higher accuracy than the approximation of Truhlar8

(section II).
The problem of coupling between the external and internal

rotational degrees of freedom was addressed by Robertson and
Wardlaw9 and Gang et al.,10.11who calculated densities of states
of a variety of molecules using the inverse Laplace transform
of the partition function. In these calculations, no separability
of the rotational degrees of freedom was assumed, and rotational
partition functions were derived from the exact kinetic energy
expressions (which included all coupling between internal and
external rotations) and potential energy functions describing the
hindrances of the internal rotations.
The rigorous approach exercised by Robertson and Wardlaw9

and Gang et al.10,11 results in more accurate densities of states
than those obtained by a traditional method based on the
assumed separability of the rotational degrees of freedom.
However, it is necessary to assume this separability in many
cases. In particular, such a necessity arises in statistical theories
of unimolecular reactions where it is frequently essential to
calculate density-of-states and sum-of-states functions of only
active1,2,12,13degrees of freedom (which excludes some or all
of the external rotations). Furthermore, full treatment of
rotational coupling requires cumbersome algebraic manipula-
tions and numerical integrations unique to each molecule, while
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assumed separability of the degrees of freedom enables the use
of significantly simpler procedures which can be easily auto-
mated and universally applied to a variety of different molecules.
It is, therefore, essential to fully understand the influence of
the separability assumption on the calculated density-of-states
and sum-of-states functions and partition functions.
In section III of this article, the results of Robertson and

Wardlaw9 and Gang et al.10,11on the density-of-states functions
and appropriate partition functions of a variety of molecules
are compared with those obtained under a separability assump-
tion with internal hindered rotors treated either classically by
the method of Knyazev et al.6 or classically with corrections
for quantum effects, as described in section II. It is demon-
strated that separability of the rotational degrees of freedom
can be assumed in most cases with reasonable accuracy and
that the main inaccuracy in the density-of-states function arises
not from the separability assumption but from the approximation
of a complex torsional potential with a simpler sinusoidal
function.

II. Density of States of One-Dimensional Hindered Rotor
via an Inverse Laplace Transform of a Classical Partition
Function with Quantum Correction

The partition function of any system can be considered as a
Laplace transform of the corresponding density-of-states func-
tion F(E) by definition:

whereâ ) (kBT)-1 is an inverse reduced temperature andE is
the energy. Thus, provided that the dependence of the partition
function on temperature is known, one can obtain the density-
of-states function by inverse Laplace transform (ILT):

The classical partition function of a one-dimensional sinu-
soidally hindered rotor is given by5

whereQf is a partition function of the corresponding free rotor,
V0 is the amplitude of the hindering potential (V) (1/2)V0(1-
cos(nφ), n is the symmetry number of the potential), â ) (kBT)-1

is the inverse reduced temperature,I0 is the modified Bessel
function, σ is the symmetry number, andB is a rotational
constant. It was shown by Knyazev et al.6 that the correspond-
ing density of statesFh(E) determined by ILT ofQclass(â) is
described by the equations

whereK is a complete elliptic integral of the first kind. The
corresponding sum-of-states function is given by6

whereE is a complete elliptic integral of the second kind.
Pitzer and Gwinn5 suggested that equation I for the classical

partition function can be corrected to account for quantum
effects via a multiplication by the ratio of quantum (Qquant

HO ) and
classical (Qclass

HO ) partition functions of a corresponding har-
monic oscillator (i.e., oscillator with a frequency derived from
the curvature at the bottom of the rotor’s hindering potential):

Isaacson and Truhlar14 have demonstrated that such a correction
for quantum effects can be applied with good accuracy to a
variety of potentials with different functional forms. Gang et
al.10,11 applied the approximation of formula III to obtain the
density-of-states function ofsec-butyl radical via the ILT of
the total rotational partition functionQquant

approx(â), with the
vibrational densities of states included by the Beyer-Swinehart
algorithm.
Such an approach to determining the density-of-states function

should be used with caution, since the approximation of
expression III, while describing the temperature dependence of
the quantum partition function with reasonable accuracy for a
variety of systems, is not derived from any fundamental
principles and, therefore, does not have a physical meaning. It
is only a phenomenological expression providing for a smooth
transition from the low-temperature region on one side, where
the ratioQclass/Qclass

HO is equal to 1 and the partition function of
a system can be described byQquant

HO , to the high-temperature
region on the other side, whereQquant

HO approachesQclass
HO and the

partition function is well approximated byQclass.
Forst7 applied a numerical ILT of the overall rovibrational

partition function of a molecule to obtain the density-of-states
function using a different approximation to the quantum partition
function of a hindered rotor, the one proposed by Truhlar.8While
the formula of Truhlar is convenient to use (it contains only
exponential and hyperbolic functions), its accuracy, generally,
is significantly lower than that of formula III. Comparison of
the partition functions calculated using the method of ref 8 and
formula III with the exact values of Pitzer and Gwinn5

(calculations performed for rotors with 0.15< B < 15 cm-1

and 0.5< V0 < 50 kJ mol-1 atT) 100-6000 K) demonstrates
that while formula III yields an accuracy not worse than 3%
(usually, better than 1%) for all chemically meaningful cases
(3 e V0 e 50 kJ mol-1), that of ref 8 exhibits deviations up to
18%, yielding, in many cases, accuracy poorer than that of a
purely classical formula I. Thus, the approximation of formula
III is used in further derivations.
In the following part of this section, the density-of-states and

sum-of-states functions of a one-dimensional hindered rotor
obtained via the ILT of expression III are analyzed. Formulas
are developed for the densities and sums of states that provide
for better agreement with the quantum partition function than
those obtained with the purely classical treatment (expression
II) while preserving physically realistic functional forms.
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For a one-dimensional sinusoidally hindered rotor, three
components of formula III are obtained as follows:Qclass is
given by formula I,

and

where h is Planck constant andν is the frequency of the
corresponding harmonic oscillator. Here, the bottom of the
classical potential is taken as an energy reference point for all
partition functions. The density-of-states functionF(E) is given
by the ILT ofQquant

approx(â):

Mathematically, this is equivalent to having two degrees of
freedom, one with a “partition function”

and the other being a harmonic oscillator. Overall density-of-
states and sum-of-states functionsF(E) andW(E) can be obtained
by a convolution ofF̃(E) ) L-1[Q̃(â)], the harmonic oscillator
density of statesFHO(E), and the harmonic oscillator sum of
statesWHO(E):2,15

For any functionF(â), the ILT of âF(â) is given by

where

as can be checked via integration by parts.16 F̃(E), therefore,
can be obtained as

whereFh(E) is given by expression II. Since

and

whereN(E) ) int[(E/hν) - (1/2)] (int(x) means integer part),
andH(x) is the Heaviside step function, we can obtain via the
convolution formulas IV

and

The first derivativeF′h(E) of the Fh(E) function (formula II) is
easily calculated,15 but the resultantF(E) function V acquires
an analytical form that is not a very pleasant one to deal with
due to the abundance of discontinuities andδ-functions. This
analytical form ofF(E) will not be used in this article and,
therefore, is not given here.
It is more convenient to analyzeF(E) andW(E) resulting from

expressions V and VI by visualizing theW(E) dependence which
is presented in Figure 1 (lower solid-line curve on the (b) plot).
As can be seen from the plot,W(E) increases with energy at
energiesE below the amplitude of hindered rotationV0 but
exhibits non-monotonic behavior at higher energies. This
nonmonotonic behavior corresponds to negative values of the
density-of-states functionF(E), which are completely unrealistic.
At the same time, theW(E) dependence, on average, follows
the classical sum-of-states function of the hindered rotor,Wh(E),
represented by the dotted line.
Considering the above analysis, one can recommend for

further use the corrected for quantum effects sum-of-states
functionWh

Q constructed fromW(E) andWh(E) functions: at
energies below the hindrance barrier (E < V0) Wh

Q(E) ) W(E)
andWh

Q(E) ) Wh(E) above the barrier:

whereFh(E) is given by expression II. Here one can use a
simple (first approximation) relation between the vibrational
frequencyν and parameters of the rotor:hν ) nxBV0, where
n is the symmetry number of the hindering potential. Care must
be taken to assure a smooth connection in the regionE ≈ V0,
whereWh

Q
1(E) may have to be extended a little above the barrier

if Wh
Q
1(V0) > Wh

Q
2(V0), or, alternatively,Wh

Q
2(E) can be

extended a little below the barrier. This small degree of
arbitrariness in making the smooth connection does not affect
the resultant partition function to any noticeable extent.
The density-of-states functionFhQ(E) of the hindered rotor

is similarly constructed from the parts of expressions V and II.
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It is equal toF(E) (formula V) at energies below the barrier
and toFh(E) above the barrier:

In many practical applications, in calculating densities of
states and performing numerical manipulations of related
functions (e.g., solving master equations for unimolecular
reactions2), the energy scale is divided into an array of energy
bins of small size, and continuous functions are replaced with
arrays. In such cases, at energies below or in the vicinity of
the hindering barrier height, it is advisable to calculate the value
of the density-of-states function for each energy bin as an
increment of theWh

Q(E) function between the upper and lower
borders of the bin divided by the bin width:

The recommendedWh
Q(E) and FhQ(E) dependencies given

by expressions VII and VIII are illustrated in Figure 1. The
Wh

Q(E) function of formula VII satisfies the requirement of
realistically representing the physics of the problem. At low
energies, it increases in a stepwise manner, as appropriate for
a torsional oscillator. Although the energy “distance” between
the steps does not reduce at energies approaching the hindering
barrier, this inaccuracy is compensated for by the fact that
Wh

Q(E) grows faster than a simple sum of step functions,
resembling, on average, an upward curvature of the classical

Wh(E) atE< V0. At energies aboveV0, where quantum effects
are not as important, theWh

Q(E) dependence follows that of
the classicalWh(E). It has been shown for a large variety of
torsional parameters (0.15< B < 15 cm-1, 0.5< V0 < 50 kJ
mol-1 ) that, with sufficiently small energy bin sizes, the
partition function obtained by a numerical integration of the
densities of states given by formulas VIII and IX with
Boltzmann factors is equal to that obtained from formula III
with an accuracy of 1%.

III. Density of States and the Separability of the External
and Internal Rotational Degrees of Freedom

Robertson and Wardlaw9 and Gang et al.10,11applied ILT of
the classical (or classical corrected for quantum effects11 via
formula III) rotational partition function to determine rotational
and rovibrational densities of states ofi-C3H7,9 n-C4H10,10

n-C5H12,10 andsec-C4H9.11 Rotational partition functions were
derived from exact kinetic and potential energy functions,
including explicit accounting for (1) interaction between rota-
tions internal and external (overall) and (2) hindrances associated
with internal rotations. After the rotational densities of states
were obtained by the ILT of the full rotational partition
functions, vibrational degrees of freedom were included by the
Beyer-Swinehart algorithm to obtain the total (rovibrational)
densities of states. Below in this section, the rotational and
rovibrational densities of states of the above species obtained
by Robertson and Wardlaw9 and Gang et al.10,11are compared
with those calculated in this work by (1) assuming the
separability of the rotational degrees of freedom and (2) applying
formulas II or VII-IX to calculate the density-of-state functions
of hindered internal rotations. The choice of purely classical
or classical corrected for quantum effects treatment reproduced
that of the authors of references 9-11: internal rotations in
i-C3H7, n-C4H10, and n-C5H12 were treated classically, and
quantum corrections were used for those insec-C4H9. The
structures of all species used in the current work conform to
those used in refs 9-11. In calculating the moments of inertia,
properties of the lowest-energy conformations were used. The
methods of Pitzer and Gwinn5,17were used to obtain the reduced
moments of inertia of all internal rotations (Table 1).
In Figure 2, ratios of the rotational density-of-states functions

obtained in the current treatment to those calculated by Gang
et al.10 for butane and pentane are plotted vs energy. As can
be seen from the plot, significant differences between the two
methods are observed at low rotational energies: up to factors
of 2.6 and 5.7 atE ) 350 cm-1 for butane and pentane,
respectively. At higher energies this disagreement decreases,
becoming negligible (less than 5 %) atE > 4000 cm-1 (48 kJ
mol-1). Including vibrational densities of states does not
increase the maximum values of disagreement but somewhat
propagates the difference to higher energies (Figure 3). The
rovibrational density-of-states ratios for butane and pentane are
still as high as 1.34 atE) 4000 cm-1 and decrease below 1.10
only atE > 14 000 cm-1 (166 kJ mol-1).
At the same time, the rovibrational densities of states for

isopropyl andsec-butyl radicals calculated in the current work
show significantly better agreement with the results of the exact
treatment of Robertson and Wardlaw9 and Gang et al.11 (Figure
3). For the isopropyl radical, the agreement is virtually
complete.18 For sec-butyl, disagreement is less than a factor
of 1.5 at its maximum and becomes negligible at a low energy
of E ) 1000 cm-1 (12 kJ mol-1). Different degrees of
disagreement between the densities of states obtained in the
current work under the assumption of separability of the

Figure 1. Plots of recommended density-of-states (a) and sum-of-
states (b) functions of a hindered internal rotor given by formulas VII
and VIII. For comparison, the sum-of-states function obtained via the
ILT of the classical partition function corrected for quantum effects is
shown (formula VI, lower solid line in plot b), as well as the
corresponding classical sum-of-states function (dotted line). Parameters
of the-CH3 hindered rotor in the butane molecule were used in the
calculations.
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rotational degrees of freedom and those calculated with the exact
accounting for the rotational coupling10,11 are reflected in the
ratios of corresponding rotational partition functions plotted in
Figure 4 vs temperature.
Secondary butyl radical,sec-C4H9, is quite similar to butane

in structure (and, therefore, in moments of inertia for internal
and external rotations and in the extent of coupling between
the external and internal rotations in the inertial tensor).
However, the current approach based on the separability of
rotational degrees of freedom gives much better results forsec-
C4H9 than for butane. The explanation, most likely, lies in the
major difference between these two molecules: the shapes of
the C2-C3 torsional potentials. That of the secondary butyl
radical, although quite complex in shape,11,19can be reasonably
approximated by a sinusoidal function with one minimum (n
) σ ) 1) (Figure 5a). While this potential has three different
wells at torsional angles of 17°, 94°, and 133° (each repeated
twice), two of these are minor compared with the overall height
of the hindering barrier. One of these minor wells is not deep
enough to accommodate even the zeroth vibrational level, and
the other one can only accommodate two (zeroth and first)
vibrational levels.19 One can consider these minor wells (and
a small maximum at a torsional angle equal to 0) as a relatively
small perturbationV1(æ) of a sinusoidal potential. The overall
hindering potentialV(æ) is thus described asV(æ) ) (1/2)V0(1

- cos(æ)) + V1(æ). The contribution of perturbationV1(æ)
(which has an alternating sign) is likely to average out, to a
large extent, in the classical partition function given by the
expression5

whereQclass(â) is given by formula I.
The corresponding torsional potential of butane has three

distinct potential energy minima at torsional angles of 0°, 118°,
and 241°, two of these being equal and positioned above the
third one by 3.8 kJ mol-1 (Figure 5b, solid line). When such
a potential (present as well in the C2-C3 and C3-C4 rotations
of pentane) is approximated with a simple sinusoidal one, there
is an ambiguity in the placement of the energy minimum of the
sinusoidal potential relative to the three unequal minima of the
real potential. In the current work, it was positioned (dashed

TABLE 1: Rotational Constants (B, cm-1), Symmetry Numbers (σ), and Torsional Barriers (V0, kJ mol-1) of Molecules Used in
the Calculations

i-C3H7
a sec-C4H9 n-C4H10 n-C5H12

overall B) 1.2958, 0.2690, 0.2415, B) 0.8887, 0.1210, 0.1138, B) 0.7360, 0.1250, 0.1168, B) 0.5358, 0.06714, 0.06344,
σ ) 2 σ ) 1 σ ) 2 σ ) 2

-CH3 rotors B) 6.9704,σ ) 3,
V0 ) 3.05

B) 5.560,σ ) 3,
V0 ) 3.13

B) 5.713,σ ) 3,
V0 ) 13.43

B) 5.419,σ ) 3,
V0 ) 13.43

B) 5.562,σ ) 3,
V0 ) 13.77

C2-C3 rotors B) 1.741,σ ) 1,
V0 ) 9.04

B) 1.487,σ ) 1,
V0 ) 16.48

B) 1.317,σ ) 1,
V0 ) 11.04

a Structure of the isopropyl radical (bond lengths and angles) is based on the ab initio results of Chen et al.21 However, a planar structure of the
radical center was used to conform to the model of Robertson and Wardlaw.9

Figure 2. Ratios of rotational densities of states of butane and pentane
obtained in the current work under the assumption of the separability
of external and internal rotations to those calculated by Gang et al.10

via ILT of the exact classical partition function with internal-external
rotational coupling taken into account (solid lines). Dashed line: same
ratio obtained for butane in the case where the minimum of the
approximating sinusoidal potential is “shifted” relative to the absolute
minimum of the real C2-C3 torsional potential by 100 cm-1 (see text).

Figure 3. Ratios of overall (rovibrational) densities of states of butane,
pentane, secondary butyl, and isopropyl radicals obtained in the current
work under the assumption of the separability of external and internal
rotations to those calculated via ILT of the exact classical (classical
corrected for quantum effects forsec-C4H9) partition function with
internal-external rotational coupling taken into account (results of refs
9-11 with vibrational densities of states included by the modified
Beyer-Swinehart algorithm3). Frequencies of the lowest-energy con-
formations of butane,22 pentane,22 and secondary butyl radical19 were
used.

Q)x π
âB∫02π

exp[-âV(æ)] dæ

≈x π
âB∫02π

exp[-â
V0
2
(1- cos(æ))] dæ ) Qclass(â)

(X)
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line in Figure 5b) at the absolute (lowest) minimum of the real
potential, which results in a poor description of the other two
minima. The analogous perturbationV1(φ) is mostly positive
and is not likely to average out. If, on the other hand, this
sinusoidal potential minimum is placed between the lowest and
the highest minima of the real potential, 100 cm-1 (1.2 kJ mol-1)
above the lowest one (dotted line in Figure 5b), the result is
significantly better accuracy in the obtained density-of-states
and corresponding partition functions (dashed lines in Figures
2 and 4). In this case, the discrepancies between the results of
the current and exact10 treatments are comparable to those

obtained for the secondary butyl radical. One should admit,
however, that there is no rationale for the choice of this particular
value of 100 cm-1 for “shifting” the potential energy minimum
of the approximating sinusoidal function. A similar improve-
ment can be obtained for pentane by positioning the minimum
of the sinusoidal potential between the different minima of the
real nonuniform potential.
Numerical evaluation of the exact (left) and approximate

(right) integrals in expression X confirms these qualitative
conclusions about the role ofV1(æ), the deviation of the real
hindering potential from its sinusoidal approximation. For
example, atT ) 100 K (the lowest temperature in Figure 4,
where disagreement in partition functions is the highest), ratios
of approximate to exact integrals equal 3 for butane, but only
1.3 for sec-C4H9 and 0.7 for butane if a sinusoidal potential
with a “shifted” minimum is used. These values correlate with
the deviations of the partition functions in Figure 4.
In the formula of Gang et al.10,11 for the classical rotational

partition functions of butane andsec-C4H9, the term q̃(â)
(notation assigned here) responsible for the coupling of external
and internal hindered rotations is

whereA(θ) is the generalized inertial tensor which was assumed
to depend only onθ, the C2-C3 torsional angle, andV3(θ) is
the C2-C3 torsional potential. The dependence of|A(θ)|1/2 on
θ is not very strong: for both molecules|A(θ)|1/2 oscillates
within <20% of its average value,a0. The |A(θ)|1/2 vs θ
dependence can be represented by a sum ofθ-independent and
θ-dependent parts,|A(θ)|1/2 ) a0 + a1(θ), and the integral in
formula XI will thus separate into two parts:

Here, both theq0(â) and q1(â) terms are associated with the
effects of the hindrance potential,V3(θ), but onlyq1(â) describes
the effects of coupling between external and internal rotations
which accounts for the|A(θ)|1/2 dependence onθ. Numerical
evaluation of the relative contributions ofq0 andq1 for butane
at T ) 100-3000 K (performed using the|A(θ)| dependence
reported by Gang et al.10 and both the realV3(θ) potential10
and the sinusoidal approximation to it) showed thatq1 values
are less than 4% ofq0. Thus,q1 is minor compared toq0, and
its contribution, generally, can be neglected without sacrificing
accuracy. This numerical comparison of the effects of (1) the
separability assumption and (2) the sinusoidal approximation
to the more complex hindering potential demonstrates that,
indeed, disagreement between the rigorous method applied by
Gang et al.10,11 and the current simplified approach is mainly
due to the use of the sinusoidal approximation and not to the
separability assumption.
Robertson and Wardlaw9 and Gang et al.10 attempted to assess

the effect of the separability assumption by comparing rotational
partition functions calculated with and without this assumption
for the internally unhindered models ofi-C3H7

9 andn-C4H10.10

The differences obtained (11% in the case ofi-C3H7 and a factor
of approximately 20 in the case ofn-C4H10) apparently result
from the fact that only approximate moments of inertia for the
internal rotations were used instead of the appropriate reduced
moments of inertia calculated by the methods of Pitzer and

Figure 4. Ratios of rotational partition functions of butane, pentane,
and secondary butyl radical obtained in the current work under the
assumption of the separability of external and internal rotations to those
calculated by Gang et al.10,11via the ILT of the exact classical (classical
corrected for quantum effects forsec-C4H9) partition function with
internal-external rotational coupling taken into account. Dashed line:
same ratio obtained for butane in the case where the minimum of the
approximating sinusoidal potential is “shifted” relative to the absolute
minimum of the real C2-C3 torsional potential by 100 cm-1 (see text).

Figure 5. Torsional potentials hindering the rotation about the C2-
C3 bond in (a) secondary butyl radical and (b) butane used in
calculations of Gang et al.10,11Dashed lines: sinusoidal approximations
used in the current work. Dotted line in plot (b): sinusoidal potential
with the minimum placed between the lowest and the highest minima
of the real potential, 100 cm-1 (1.2 kJ mol-1) above the absolute
minimum.

q̃(â) )∫02π|A(θ)|1/2 exp(-âV3(θ)) dθ (XI)

q̃(â) ) a0∫02π
exp(-âV3(θ)) dθ +

∫02π
a1(θ) exp(-âV3(θ)) dθ ) q0(â) + q1(â) (XII)
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Gwinn5,17 (i-C3H7 andn-C4H10) and from different assignments
of symmetry numbers (n-C4H10).20

The above comparison of the density-of-states and partition
functions obtained under the assumption of the separability of
rotations on one hand and in the full treatment of rotational
coupling on the other demonstrates, in general, good agreement
between the two approaches. This agreement in the densities
of states is almost complete for isopropyl andsec-butyl radicals
and is reasonable for butane and pentane. In all cases,
disagreements in the densities of states are negligible at
chemically significant energies. The significant discrepancies
between these two approaches observed for butane and pentane
molecules at low energies (for densities of states) and low
temperatures (for partition functions) seem to mainly originate
not from the inseparability of the internal and external rotational
degrees of freedom but rather from the crudeness of the
sinusoidal approximation to the hindering potentials. While
values of the density-of-states functionF(E) are needed, in
general, at high energies comparable to reaction barriers, sum-
of-states functionW(E) values (obtained by an integration of
the density-of-states function and used, for example, to calculate
microcanonical rate constants via the RRKM formula1,2) are
needed at low energies as well. Low-energy discrepancies
(analogous to those observed for butane and pentane) in the
F(E) of a transition state will cause similar low-energy errors
in W(E) and, thus, incorrect microcanonical rate constants.
Further efforts directed to accurately describing densities of
states and partition functions of a one-dimensional hindered rotor
with arbitrary hindering potential are needed.
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