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Analytical formulas for the density-of-states and sum-of-states functions of internal one-dimensional hindered
rotors are developed and analyzed. Quantum effects are taken into account via the inverse Laplace transform
of the classical rotational partition function corrected for quantum effects by the method of Pitzer and Gwinn.
Density-of-states and partition functions ie€3H;, n-C4H1,, N-CsH;,, andsecCyHg are calculated under a
separability assumption with internal hindered rotors treated either classically or classically with corrections
for quantum effects. Results are compared with those obtained in a full treatment with explicit accounting
for interaction between internal and external (overall) rotations. It is demonstrated that separability of the
rotational degrees of freedom can be assumed in most cases with reasonable accuracy, the main source of
disagreement between the two approaches being not the separability assumption but the approximation of a
complex torsional potential with a simpler sinusoidal function.

I. Introduction hindered rotors via a numerical inversion of the overall partition
) ) ) ) function. In its quantum form, the algorithm uses the ap-

Modeling of many classes of chemical reactions requires a proximation of Truhlaf to the quantum partition function of a
knowlgdge of the density-of-states anq sum-of-states functionsyne-dimensional hindered rotor. This approach requires per-
of the involved molecules. The established common approachforming a numerical inverse Laplace transform of the overall
is to assume separability of vibrational and rotational degrees partition function, a procedure unique to each molecule.
of freedom, as well as separability of the external and internal However, there exists a demand for universal analytical formulas
rotations of the molecule? Thus, a model of the molecule  that can be applied to any molecule possessing one or several
consisting of a collection of harmonic oscillators and free one- (jfferent one-dimensional hindered rotors. In section Il of the
and two-dimensional rotors is created. The density-of-states crrent article, new formulas for the density-of-states and sum-
and sum-of-states functions of such an idealized molecule areof.states functions of internal one-dimensional hindered rotors
easily calculated using, for example, the modified Beyer are developed via ILT of the classical partition function
Swinehart algorithni. Anharmonicity of constituent oscillators  ¢gorrected for quantum effects. The quantum correction is based
can be accounted for via the SteiRabinovitch approach. on the method of Pitzer and Gwifinyhich, generally, provides

Two drawbacks to such analysis are related to (1) the presencesignificantly higher accuracy than the approximation of Truhlar
of one-dimensional hindered internal rotors and (2) the potential (section ).
interference of coupling between internal and external (overall)  The problem of coupling between the external and internal
rotations of the molecule. One approach to the treatment of rotational degrees of freedom was addressed by Robertson and
hindered internal rotors is to solve the corresponding quantum- Wardlaw? and Gang et ak1'who calculated densities of states
mechanical problem. This was done by Pitzer and Gwiwhp of a variety of molecules using the inverse Laplace transform
tabulated the contributions of hindered internal rotations to of the partition function. In these calculations, no separability
thermodynamic functions for a variety of combinations of of the rotational degrees of freedom was assumed, and rotational
rotational constants and hindering barriers. Applying the partition functions were derived from the exact kinetic energy
method of Pitzer and Gwinn to calculating density of states expressions (which included all coupling between internal and
would involve a time-consuming determination of individual external rotations) and potential energy functions describing the
energy levels and their inclusion in the total density-of-states hindrances of the internal rotations.
function of the molecule by direct count. An alternative method  The rigorous approach exercised by Robertson and Watdlaw
was suggested by Knyazev et @lwho developed analytical  and Gang et a%11results in more accurate densities of states
formulas for the density-of-states and sum-of-states functionsthan those obtained by a traditional method based on the
of a sinusoidally hindered one-dimensional rotor based on the agssumed separability of the rotational degrees of freedom.
inverse Laplace transform (ILT) of the classical partition However, it is necessary to assume this separability in many
function. cases. In particular, such a necessity arises in statistical theories

While the classical treatment is applicable with a good degree of unimolecular reactions where it is frequently essential to
of accuracy to many internal rotors encountered in real calculate density-of-states and sum-of-states functions of only
molecules, quantum effects may become important at room active-21213degrees of freedom (which excludes some or all
temperature and below. Fofstleveloped an algorithm for  of the external rotations). Furthermore, full treatment of
calculating the density-of-states function of a system consisting rotational coupling requires cumbersome algebraic manipula-
of independent oscillators, free rotors, and one-dimensional tions and numerical integrations unique to each molecule, while
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assumed separability of the degrees of freedom enables the usgV, (E) =
of significantly simpler procedures which can be easily auto-

mated and universally applied to a variety of different molecules. 4 KO E( / E) — (1 — E) K( E) L, 0<E<V
It is, therefore, essential to fully understand the influence of wo N B Vo Vo Vo

the separability assumption on the calculated density-of-states | 4 E Vo

and sum-of-states functions and partition functions. N BEW E/ E>Vo

In section Il of this article, the results of Robertson and
Wardlaw’ and Gang et al%1on the density-of-states functions
and appropriate partition functions of a variety of molecules WhereE is a complete elliptic integral of the second kind.
are compared with those obtained under a separability assump- Pitzer and Gwinhsuggested that equation | for the classical
tion with internal hindered rotors treated either classically by partition function can be corrected to account for quantum
the method of Knyazev et &lor classically with corrections  effects via a mult|pI|cat|on by the ratio of quantu@ﬁn) and
for quantum effects, as described in section Il. It is demon- classical Qjo.) partition functions of a corresponding har-
strated that separability of the rotational degrees of freedom monic oscillator (i.e., oscillator with a frequency derived from
can be assumed in most cases with reasonable accuracy anghe curvature at the bottom of the rotor’s hindering potential):
that the main inaccuracy in the density-of-states function arises

not from the separability assumption but from the approximation Q

of a complex torsional potential with a simpler sinusoidal Q= Qqjass ‘:’gm (1
function. Quiass

II. Density of States of One-Dimensional Hindered Rotor Isaacson and TruhRfrhave demonstrated that such a correction
via an Inverse Laplace Transform of a Classical Partition for quantum effects can be applied with good accuracy to a
Function with Quantum Correction variety of potentials with different functional forms. Gang et

The partition function of any system can be considered as aal**** applied the approximation of formula Ill to obtain the
Laplace transform of the corresponding density-of-states func- density-of-states function afecbutyl radical via the ILT of

tion p(E) by definition: the total rotational partition functiorQ{ia{(B), with the
vibrational densities of states included by the Bey@&winehart
Q) = f, p(E) exp(-pE) dE = LIp(E)] algorithm.

Such an approach to determining the density-of-states function
should be used with caution, since the approximation of
expression lll, while describing the temperature dependence of
the quantum partition function with reasonable accuracy for a
variety of systems, is not derived from any fundamental
principles and, therefore, does not have a physical meaning. It
p(E) = Lfl[Q(ﬁ)] is onl_y_ a phenomenological expression _providing for_ a smooth

transition from the low-temperature region on one side, where

The classical partition function of a one-dimensional sinu- the ratioQuas{Qiinis equal to 1 and the partition function of

wheref = (kgT) 1 is an inverse reduced temperature &nig

the energy. Thus, provided that the dependence of the partition
function on temperature is known, one can obtain the density-
of-states function by inverse Laplace transform (ILT):

soidally hindered rotor is given By a system can be described B2, to the high-temperature
region on the other side, whe@uamapproache@classand the
;{ 03) (VOB) partition function is well approximated b®qjass
Quias{f) = Q(B) ex 2 lo 2 Forst applied a numerical ILT of the overall rovibrational

2 > function using a different approximation to the quantum partition
function of a hindered rotor, the one proposed by Truhlathile

whereQ is a partition function of the corresponding free rotor, the formula of Truhlar is convenient to use (it contains only

1( 2)1/2 p( 03) | ( 03) ) partition function of a molecule to obtain the density-of-states
BS 0

Vo is the amplitude of the hindering potenti® € (1/2Vo(1 — exponential and hyperbolic functions), its accuracy, generally,
cosfig), nis the symmetry number of the potentjdl)= (ksT)~* is significantly lower than that of formula lll. Comparison of
is the inverse reduced temperatutgjs the modified Bessel  the partition functions calculated using the method of ref 8 and
function, o is the symmetry number, anB is a rotational formula Il with the exact values of Pitzer and Gwhn

constant. It was shown by Knyazev efahat the correspond-  (calculations performed ‘;OF rotors with 0.36 B < 15 cnt*
ing density of stategn(E) determined by ILT 0fQuas{f) is and 0.5< Vp < 50 kd mot't at T = 100-6000 K) demonstrates

described by the equations that while formula Ill yields an accuracy not worse than 3%
(usually, better than 1%) for all chemically meaningful cases
’ E (3 = Vo = 50 kJ moi™), that of ref 8 exhibits deviations up to

ZK(\/:) 18%, yielding, in many cases, accuracy poorer than that of a

0 0<E<V, purely classical formula l. Thus, the approximation of formula

_ BV, Il is used in further derivations.

pr(B) = \/ an In the following part of this section, the density-of-states and

ZK(\/T’) sum-of-states functions of a one-dimensional hindered rotor

E E>V obtained via the ILT of expression Il are analyzed. Formulas

70 VBE are developed for the densities and sums of states that provide
i for better agreement with the quantum partition function than
whereK is a complete elliptic integral of the first kind. The those obtained with the purely classical treatment (expression
corresponding sum-of-states function is givel§ by II) while preserving physically realistic functional forms.
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For a one-dimensional sinusoidally hindered rotor, three
components of formula Il are obtained as follow&gass is
given by formula I,

HO __
class™

(wp)™
and

HO

quant™

exp(—(1/2hvB)(1 — exp— hv[)’))’l

where h is Planck constant and is the frequency of the
corresponding harmonic oscillator. Here, the bottom of the

classical potential is taken as an energy reference point for aIIW(E) —

partition functions. The density-of-states functjg(i) is given
by the ILT of Qgia(B):

HO

o(E) = L‘lch.ass ‘,L“Sj

clas!

Mathematically, this is equivalent to having two degrees of
freedom, one with a “partition function”

Q(ﬂ) = chas!Qggss

and the other being a harmonic oscillator. Overall density-of-
states and sum-of-states functigiig) andW(E) can be obtained
by a convolution ofs(E) = L=Q(B)], the harmonic oscillator
density of statesno(E), and the harmonic oscillator sum of
statesWho(E):215

p(E) = [B(E — X) pyio)

WE) = [ Wio(E — X) B() dx (IV)
For any functionF(f), the ILT of SF(3) is given by

L' [BF(B)] = f'(E) + f(0) (E)

where

f(E) = L [F(8)]

as can be checked via integration by paftsp(E), therefore,
can be obtained as

A(E) = L ThvBQqasdB)] = hw{ pi((E) + p(0) S(E)}
wherepr(E) is given by expression Il. Since

N(E)
puo(B) = S O(E — hw(i + 1/2))

and

N(E)
Wyo(E) =

H(E — hv(i + 1/2))

whereN(E) = int[(E/hw) — (1/2)] (int(x) means integer part),
andH(x) is the Heaviside step function, we can obtain via the
convolution formulas IV

Knyazev

p(E) = tw [ To(E = X) +
N(X)

S(E = X) (O] O(x — hw(i + 1/2)) ok

£
N(E)
—tw S [p(E — hw(i + 1/2)) +

Pr(0) O(E — hw(i + 1/2))] (V)
and
N(E — x)

h [ > H(E = ») = hwi + 12)][p() +

5(x) pa(0)] dx
N(E)
=t pE — (i + 1/2))

(V1)

The first derivativep(E) of the pn(E) function (formula I1) is
easily calculated® but the resultanp(E) function V acquires

an analytical form that is not a very pleasant one to deal with
due to the abundance of discontinuities anflinctions. This
analytical form ofp(E) will not be used in this article and,
therefore, is not given here.

It is more convenient to analyz€E) andW(E) resulting from
expressions V and VI by visualizing tNg(E) dependence which
is presented in Figure 1 (lower solid-line curve on the (b) plot).
As can be seen from the plof/(E) increases with energy at
energieskE below the amplitude of hindered rotatiofy but
exhibits non-monotonic behavior at higher energies. This
nonmonotonic behavior corresponds to negative values of the
density-of-states functiop(E), which are completely unrealistic.

At the same time, th&\(E) dependence, on average, follows
the classical sum-of-states function of the hindered rotiE),
represented by the dotted line.

Considering the above analysis, one can recommend for
further use the corrected for quantum effects sum-of-states
function\/\/,? constructed fromMME) and WHL(E) functions: at
energies below the hindrance barri&r € Vp) V\/E(E) = WE)
andWQ(E) = Wh(E) above the barrier:

WH(E) =
int(E/hy — 1/2)
W, 2,(E) = hw Z pn(E — hv(i +1/2)), 0 <E <V,

o 4 [E Vo
WhZ(E)=n_0 ESE E,

where pr(E) is given by expression Il. Here one can use a
simple (first approximation) relation between the vibrational
frequency» and parameters of the rotohv = n,/BV,, where
nis the symmetry number of the hindering potential. Care must
be taken to assure a smooth connection in the reBienV,
whereW,?(E) may have to be extended a little above the barrier
if WhRi(Vo) > Wh(Vo), or, alternatively, W,2(E) can be
extended a little below the barrier. This small degree of
arbitrariness in making the smooth connection does not affect
the resultant partition function to any noticeable extent.

The density-of-states functioph?(E) of the hindered rotor
is similarly constructed from the parts of expressions V and Il.

E>V,
(VI
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0 1 2 WL(E) atE < Vp. At energies abov¥,, where quantum effects
€ are not as important, th&4,?(E) dependence follows that of
° ok _ the classicaWy(E). It has been shown for a large variety of

'T’O a) torsional parameters (0.15 B < 15 cntl, 0.5 < Vp < 50 kJ

T mol~! ) that, with sufficiently small energy bin sizes, the

~ 5L - partition function obtained by a numerical integration of the

<° densities of states given by formulas VIII and IX with

% . Boltzmann factors is equal to that obtained from formula IlI
O — -

with an accuracy of 1%.

[ll. Density of States and the Separability of the External
and Internal Rotational Degrees of Freedom

Robertson and Wardldand Gang et al®11applied ILT of
the classical (or classical corrected for quantum eftéatia
formula 111) rotational partition function to determine rotational
and rovibrational densities of states BfC3H7;,° n-CyHy,1°
n-CsH12,1% andsecCyHo.1! Rotational partition functions were
derived from exact kinetic and potential energy functions,
including explicit accounting for (1) interaction between rota-
s L& = | Ly tions internal and external (overall) and (2) hindrances associated
0 4 9 with internal rotations. After the rotational densities of states
E/V, were obtained by the ILT of the full rotational partition
functions, vibrational degrees of freedom were included by the

W(E/V,)

Figure 1. Plots of recommended density-of-states (a) and sum-of- Qi ; ; ; ;
states (b) functions of a hindered internal rotor given by formulas VII Beyer-Swinehart algorithm to obtain the total (rovibrational)

and VIII. For comparison, the sum-of-states function obtained via the der?SItle_S of States_._ Below in this section, the rot_atlonal E.md
ILT of the classical partition function corrected for quantum effects is rovibrational densities of states of the above species obtained
shown (formula VI, lower solid line in plot b), as well as the by Robertson and Wardld&and Gang et al%!!are compared
corresponding classical sum-of-states function (dotted line). Parameterswith those calculated in this work by (1) assuming the
of the —CH; hindered rotor in the butane molecule were used in the separability of the rotational degrees of freedom and (2) applying
calculations. formulas Il or VII—IX to calculate the density-of-state functions

It is equal top(E) (formula V) at energies below the barrier of hindered internal rotations. The choice of purely classical

and topn(E) above the barrier: or classical corrected for quantum effects treatment reproduced
' that of the authors of references-91: internal rotations in
0 (E) = i-CsH7, n-C4Hj0, and n-CsH;, were treated classically, and

guantum corrections were used for thosesecCsHo. The
structures of all species used in the current work conform to
those used in refs-911. In calculating the moments of inertia,
properties of the lowest-energy conformations were used. The
methods of Pitzer and GwiA’ were used to obtain the reduced
moments of inertia of all internal rotations (Table 1).

In many practical applications, in calculating densities of  In Figure 2, ratios of the rotational density-of-states functions
states and performing numerical manipulations of related obtained in the current treatment to those calculated by Gang
functions (e.g., solving master equations for unimolecular et all? for butane and pentane are plotted vs energy. As can
reactiond), the energy scale is divided into an array of energy be seen from the plot, significant differences between the two
bins of small size, and continuous functions are replaced with methods are observed at low rotational energies: up to factors
arrays. In such cases, at energies below or in the vicinity of of 2.6 and 5.7 atE = 350 cni! for butane and pentane,
the hindering barrier height, it is advisable to calculate the value respectively. At higher energies this disagreement decreases,
of the density-of-states function for each energy bin as an becoming negligible (less than 5 %) &t> 4000 cn?! (48 kJ
increment of thaMQ(E) function between the upper and lower mol™2). Including vibrational densities of states does not

N(E)
hv Z[p'h(E — hw(i = 1/2)) + p,(0) (E — hw(i + 1/2))], 0<E <V,

Pr(E) E>V,
D)

borders of the bin divided by the bin width: increase the maximum values of disagreement but somewhat
propagates the difference to higher energies (Figure 3). The
o 6WhQ(E) rovibrational density-of-states ratios for butane and pentane are
e (B)=—3g (1X) still as high as 1.34 & = 4000 cn1 and decrease below 1.10
only atE > 14 000 cni® (166 kJ mot?).
The recommendetiQ(E) and pn?(E) dependencies given At the same time, the rovibrational densities of states for

by expressions VII and VIII are illustrated in Figure 1. The isopropyl andsecbutyl radicals calculated in the current work
WHR(E) function of formula VII satisfies the requirement of show significantly better agreement with the results of the exact
realistically representing the physics of the problem. At low treatment of Robertson and Wardfand Gang et & (Figure
energies, it increases in a stepwise manner, as appropriate foB). For the isopropyl radical, the agreement is virtually

a torsional oscillator. Although the energy “distance” between completet® For secbutyl, disagreement is less than a factor
the steps does not reduce at energies approaching the hinderingf 1.5 at its maximum and becomes negligible at a low energy
barrier, this inaccuracy is compensated for by the fact that of E = 1000 cnt! (12 kJ mof?). Different degrees of
WHR(E) grows faster than a simple sum of step functions, disagreement between the densities of states obtained in the
resembling, on average, an upward curvature of the classicalcurrent work under the assumption of separability of the
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TABLE 1: Rotational Constants (B, cm™), Symmetry Numbers (), and Torsional Barriers (Vo, kJ mol~1) of Molecules Used in
the Calculations

i-CsH-2 secCyHg n-C4H1o n-CsH12
overall B =1.2958, 0.2690, 0.2415, B =0.8887,0.1210, 0.1138, B=0.7360, 0.1250, 0.1168, B =0.5358, 0.06714, 0.06344,
o=2 o=1 o=2 o=2
—CHgs rotors B=6.9704,0=3, B =5.560,0 = 3, B=5.713,0 =3, B=5.419,0 =3,
Vo= 3.05 Vo=3.13 Vo=13.43 Vo=13.43
B=5.562,0 =3,
Vo=13.77
C,—Csrotors B=17410=1, B=1.4870=1, B=13170=1,
Vo=9.04 Vo=16.48 Vo=11.04

a Structure of the isopropyl radical (bond lengths and angles) is based on the ab initio results of CRéiletwvalver, a planar structure of the
radical center was used to conform to the model of Robertson and Watdlaw.
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Figure 2. Ratios of rotational densities of states of butane and pentane E/ em”!

obtained in the current work under the assumption of the separability
of external and internal rotations to those calculated by Gangt al.
via ILT of the exact classical partition function with interraxternal
rotational coupling taken into account (solid lines). Dashed line: same
ratio obtained for butane in the case where the minimum of the
approximating sinusoidal potential is “shifted” relative to the absolute
minimum of the real @-C; torsional potential by 100 cm (see text).

Figure 3. Ratios of overall (rovibrational) densities of states of butane,
pentane, secondary butyl, and isopropyl radicals obtained in the current
work under the assumption of the separability of external and internal
rotations to those calculated via ILT of the exact classical (classical
corrected for quantum effects faecCsHg) partition function with
internak-external rotational coupling taken into account (results of refs
9—11 with vibrational densities of states included by the modified
rotational degrees of freedom and those calculated with the exactBeyer—Swinehart algorithd). Frequencies of the lowest-energy con-
accounting for the rotational coupliiftt are reflected in the formations of butané pentane? and secondary butyl radi¢8ere

ratios of corresponding rotational partition functions plotted in  US€d-

Figure 4 vs temperature. — cosg)) + V ibuti -
. . N 1(p). The contribution of perturbatioN(¢)
Secondary butyl radicasecCqHs, is quite similar to butane (which has an alternating sign) is likely to average out, to a

in structure (and, therefore, in moments of inertia for internal large extent, in the classical partition function given by the
and external rotations and in the extent of coupling between expressioh

the external and internal rotations in the inertial tensor).
However, the current approach based on the separability of T pon

rotational degrees of freedom gives much better resultsder Q= 4 /,@ ﬂ) exp[—AV(g)] dg

C4Ho than for butane. The explanation, most likely, lies in the

major differenqe between t_hese two molecules: the shapes of . V,

the G—C; torsional potentials. That of the secondary butyl A /—B j(; ex;{—ﬁ 3(1 — cos@))| dep = Qg asdB)
radical, although quite complex in shajdé?can be reasonably p

approximated by a sinusoidal function with one minimum (

= ¢ = 1) (Figure 5a). While this potential has three different whereQcas{) is given by formula I.

wells at torsional angles of 1794°, and 133 (each repeated The corresponding torsional potential of butane has three
twice), two of these are minor compared with the overall height distinct potential energy minima at torsional angles $fi1.8,

of the hindering barrier. One of these minor wells is not deep and 24%, two of these being equal and positioned above the
enough to accommodate even the zeroth vibrational level, andthird one by 3.8 kJ motft (Figure 5b, solid line). When such
the other one can only accommodate two (zeroth and first) a potential (present as well in the-©C3; and G—C, rotations
vibrational levels® One can consider these minor wells (and of pentane) is approximated with a simple sinusoidal one, there
a small maximum at a torsional angle equal to 0) as a relatively is an ambiguity in the placement of the energy minimum of the
small perturbatio/1(¢) of a sinusoidal potential. The overall sinusoidal potential relative to the three unequal minima of the
hindering potentiaV(¢) is thus described a#(¢) = (1/2)Vo(1 real potential. In the current work, it was positioned (dashed

(X)
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L L B L obtained for the secondary butyl radical. One should admit,
r 7] however, that there is no rationale for the choice of this particular
value of 100 cm? for “shifting” the potential energy minimum
of the approximating sinusoidal function. A similar improve-
pentane ment can be obtained for pentane by positioning the minimum
of the sinusoidal potential between the different minima of the
real nonuniform potential.
Numerical evaluation of the exact (left) and approximate
(right) integrals in expression X confirms these qualitative
W conclusions about the role &fi(¢), the deviation of the real
2 sec—C H, — hindering potential from its sinusoidal approximation. For
_____ example, aff = 100 K (the lowest temperature in Figure 4,
T TT———— where disagreement in partition functions is the highest), ratios
N T T of approximate to exact integrals equal 3 for butane, but only
0 500 1000 1500 2000 1.3 for seecC4Hg and 0.7 for butane if a sinusoidal potential
T/ K with a “shifted” minimum is used. These values correlate with

Figure 4. Ratios of rotational partition functions of butane, pentane, the deviations of the partition functions in Flgyre 4. .

and secondary butyl radical obtained in the current work under the [N the formula of Gang et af!*for the classical rotational
assumption of the separability of external and internal rotations to those partition functions of butane andecCiHo, the term §(p5)
calculated by Gang et #:*via the ILT of the exact classical (classical ~ (notation assigned here) responsible for the coupling of external
corrected for quantum effects faeecCsHo) partition function with and internal hindered rotations is

internak-external rotational coupling taken into account. Dashed line:

same ratio obtained for butane in the case where the minimum of the o

approximating sinusoidal potential is “shifted” relative to the absolute 4 = L IA(0)M2 exp(—BV(0)) db (X1)
minimum of the real g-C; torsional potential by 100 cm (see text).

butane

Ratio of rotational partition functions

0 90 180 270 360 whereA(6) is the generalized inertial tensor which was assumed
T T T to depend only orf), the G—C;3 torsional angle, an®¥/3(0) is

the G—C;s torsional potential. The dependence A{60)|Y2 on

0 is not very strong: for both moleculdé(0)|Y2 oscillates
within <20% of its average valuegy. The |A(6)|Y2 vs 6
dependence can be represented by a sufhinflependent and
0-dependent partsA(0)|Y2 = ap + ay(0), and the integral in
formula XI will thus separate into two parts:

808) = 2 f, " exp(-pV(0)) o +
b/;h a,(6) exp(=pV5(0)) db = qo(B) + ay(B) (XII)

iR Here, both thege(8) and qu(B) terms are associated with the
10 L ;o : 1 effects of the hindrance potentid(6), but onlyq.(8) describes

' the effects of coupling between external and internal rotations
4 1 which accounts for th¢A(0)|Y2 dependence of.. Numerical

° 100 cm-"\},‘ i evaluation of the relative contributions af anda; for butane
ol T e \ at T = 100-3000 K (performed using thgA(6)| dependence
0 0 Mo 270 360 reported by Gang et &f.and both the real/3(0) potential®

torsional angle / degrees and the sinusoidal approximation to it) showed thavalues

Figure 5. Torsional potentials hindering the rotation about the-C ~ are less than 4% af. Thus,q; is minor compared top, and
Cs; bond in (a) secondary butyl radical and (b) butane used in its contribution, generally, can be neglected without sacrificing
calculations of Gang et &' Dashed lines: sinusoidal approximations accuracy. This numerical comparison of the effects of (1) the
used in the current work. Dotted line in plot (b): sinusoidal potential separability assumption and (2) the sinusoidal approximation
with the minimum placed between the Ioweft and the highest minima {5 the more complex hindering potential demonstrates that,
‘r);ir:rn?u:ﬁal potential, 100 cm (1.2 kJ motf?) above the absolute  jy4eeq disagreement between the rigorous method applied by
' Gang et al%!! and the current simplified approach is mainly
line in Figure 5b) at the absolute (lowest) minimum of the real due to the use of the sinusoidal approximation and not to the
potential, which results in a poor description of the other two separability assumption.
minima. The analogous perturbatidf(¢) is mostly positive Robertson and Wardldand Gang et & attempted to assess
and is not likely to average out. If, on the other hand, this the effect of the separability assumption by comparing rotational
sinusoidal potential minimum is placed between the lowest and partition functions calculated with and without this assumption
the highest minima of the real potential, 100¢n(il.2 kJ mot?) for the internally unhindered models B3H7° andn-C4H ;.10
above the lowest one (dotted line in Figure 5b), the result is The differences obtained (11% in the casé0§H; and a factor
significantly better accuracy in the obtained density-of-states of approximately 20 in the case afC4H1q) apparently result
and corresponding partition functions (dashed lines in Figures from the fact that only approximate moments of inertia for the
2 and 4). In this case, the discrepancies between the results ofnternal rotations were used instead of the appropriate reduced
the current and exatt treatments are comparable to those moments of inertia calculated by the methods of Pitzer and
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GwinnP17 (i-C3H; andn-C4H10) and from different assignments ~ (2) Gilbert, R.G.; Smith, S. CTheory of Unimolecular and Recom-
of symmetry numbersn(C,Hag 20 bination ReactlortsBIa(.:kweII. O?<f0rq, 1990.

The above comparison of the density-of-states and partition ., .(3) Astholz, D. C.; Troe, J.; Wieters, W. Chem. Phys1979 70,
funct_|ons obtained under the_ assumption of the separabl_hty of (4) Stein, S. E.. Rabinovitch, B. . Chem. Phys1973 58, 2473.
rotatllc_)ns on r(])ne rr:and and in the fl_JII treatm?ant of rotational (5) Pitzer, K. S.; Gwinn, W. DJ. Chem. Phys1942 10, 428.
coupling on the other demonstrate_s, in general, g_ood agreement gy wnvazev, V. D.; Dubinsky, I. A.; Slagle, I. R.; Gutman, D.Phys.
between the two approaches. This agreement in the densitieschem.1994 98, 5279.
of states is almost complete for isopropyl aet:butyl radicals (7) Forst, W.J. Comput. Chenml996 17, 954.
and is reasonable for butane and pentane. In all cases, (8) Truhlar, D. G.J. Comput. Chem1991 12, 266.
disagreements in the densities of states are negligible at (9) Robertson, S. H.; Wardlaw, D. MChem. Phys. Lett1992 199
chemically significant energies. The significant discrepancies 391 N
between these two approaches observed for butane and pentan]eréﬁg)lggan%z"]'3’5%%“”30”' S. H.; Pilling, M.1.Chem. Soc., Faraday
molecules at low ene_r_gles (for. densities of Sta'.[es) and low 11) Gang, J.; Robertson, S. H.; Pilling, M.Jl.Chem. Soc., Faraday
temperatures (for partition functllons) seem to mainly originate Trans.1997 93, 1481.
not from the inseparability of the internal and external rotational  (12) Baer, T.; Hase, W. LUnimolecular Reaction Dynamics. Theory
degrees of freedom but rather from the crudeness of the and ExperimentsOxford University Press: New York, 1996.
sinusoidal approximation to the hindering potentials. While  (13) Forst, WTheory of Unimolecular Reactionacademic Press: New
values of the density-of-states functigifE) are needed, in York, 1973, - Truh h h
general, at high energies comparable to reaction barriers, sum- (ig) gaagsﬁt”' A |Ds _T;J ﬁ_rl'( DI' %%Iem% 'ID tys.1§i81$78,_4090. §
of-states functionM(E) values (obtained by an integration of Prédu)cts-?casde%gﬁre's’s: Yo Vork. sogg. | earas, eries, an
th? densny-(_)f-states function and.used’ for example, to calculate (16) In some popular tables of Laplace transforms (e.g., Oberhettinger,
microcanonical rate constants via the RRKM form#)aare F.; Badii, L. Tables of Laplace TransformSpringer-Verlag: Berlin, 1973)
needed at low energies as well. Low-energy discrepanciesthe d-function is missing.

(analogous to those observed for butane and pentane) in the (17) Pitzer, K. S.J. Chem. Phys1946 14, 239. _ N

B(E) of a ranston stte will cause simiar ow-eneray erors (1) Terperelus sependence of e b} ssesics talone pron
n W(E) and, thl{& Incorrect m|crocanon|cgl 'rate con's.tants. (expressions 31 and 12 in ref 9) differs from the one obtained using the
Further efforts directed to accurately describing densities of separability assumption and formula | by a constant factor which is

states and partition functions of a one-dimensional hindered rotordetermined by the geometrical structure of the isopropyl radical. This factor

; ; ; ; : was calculated based on the bond lengths and angles reported by Chen et
with arbitrary hindering potential are needed. al2t (with radical center forced into a planar configuration to conform to

. the model used in ref 9 and with an apparently accidental permutation of
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